If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21m^2+93m-60=0
a = 21; b = 93; c = -60;
Δ = b2-4ac
Δ = 932-4·21·(-60)
Δ = 13689
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{13689}=117$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(93)-117}{2*21}=\frac{-210}{42} =-5 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(93)+117}{2*21}=\frac{24}{42} =4/7 $
| 3x+-10+x=90 | | p-16=-32 | | 3/7x+3-x+3=2 | | 21-21x=-42 | | 19.95=3.95c+63.40 | | b-4+4b=22 | | 2/3x+4=2/3x-6 | | |-4+5x|=16 | | 2+x/9=29 | | 3(x-2)^2-3=-60 | | 4(x−7)+2=3x | | 5(h-3)=2(h+6) | | 1.2×-4y=28 | | 2x+2=5x-5 | | x-56,409=240,021 | | 2/12x+6=-2 | | X+3-3x=15 | | 5=1+6d | | (2/x)+5=(5/3x)+(31/6) | | 4y-120=4y+12 | | 5(h-3)=2(h+6 | | 3(x+4)=5x−1 | | y/2-2=6 | | w^2=-17w | | -16+n=-9 | | -y/3+9=15 | | 27=3c−3(6−2c)27=3c−3(6−2c) | | 1/3x2+3x–4=–4 | | y/5+y/2=8/3 | | (3x+6)+(3x+6)=24 | | 2(2t+4)=3/4(24-8t | | 8r^2+6r-23=0 |